客服電話
在線客服
Online
公眾號
回到頂部
來源:中(zhong)國(guo)環境(jing)報第8版
2020年(nian)中央經(jing)濟工作會議明確提出,打(da)好(hao)污(wu)染(ran)(ran)防治攻(gong)堅戰,堅持方向(xiang)不(bu)變、力(li)度(du)不(bu)減(jian),突出精準(zhun)治污(wu)、科(ke)學治污(wu)、依(yi)法治污(wu),推動生態環境(jing)質量(liang)持續(xu)好(hao)轉(zhuan)。近年(nian)來大氣(qi)(qi)污(wu)染(ran)(ran)治理成(cheng)(cheng)效顯著(zhu),環境(jing)空氣(qi)(qi)質量(liang)明顯改善(shan),細顆(ke)(ke)粒(li)物(wu)濃度(du)明顯下(xia)降(jiang),重(zhong)污(wu)染(ran)(ran)天氣(qi)(qi)明顯減(jian)少。但臭氧(yang)污(wu)染(ran)(ran)問題逐(zhu)步(bu)顯現,濃度(du)呈逐(zhu)年(nian)上升態勢,成(cheng)(cheng)為(wei)影響環境(jing)空氣(qi)(qi)質量(liang)的(de)又一重(zhong)要污(wu)染(ran)(ran)物(wu),加強(qiang)細顆(ke)(ke)粒(li)物(wu)和(he)臭氧(yang)協同控制成(cheng)(cheng)為(wei)改善(shan)環境(jing)空氣(qi)(qi)質量(liang)的(de)關鍵(jian)。大氣(qi)(qi)污(wu)染(ran)(ran)防治工作的(de)艱巨性(xing)和(he)復雜性(xing),亟需(xu)監測科(ke)技(ji)(ji)力(li)量(liang)的(de)支持。聚光科(ke)技(ji)(ji)(杭州)股份有限公(gong)司(si)(以下(xia)簡稱“聚光科(ke)技(ji)(ji)”)成(cheng)(cheng)立(li)于2002年(nian),經(jing)過(guo)近20年(nian)的(de)發展,現已(yi)成(cheng)(cheng)為(wei)國(guo)內高(gao)端分析(xi)儀器儀表領軍(jun)企業,其自主(zhu)(zhu)研(yan)(yan)發的(de)全(quan)流程監測設(she)(she)備技(ji)(ji)術(shu)成(cheng)(cheng)熟(shu),已(yi)廣泛應用于眾多國(guo)家級/省級重(zhong)點項(xiang)(xiang)目(mu)建設(she)(she)。通過(guo)多年(nian)技(ji)(ji)術(shu)研(yan)(yan)發,公(gong)司(si)目(mu)前(qian)取得(de)專利800余(yu)項(xiang)(xiang),計(ji)算機軟件著(zhu)作權300余(yu)項(xiang)(xiang),主(zhu)(zhu)持或參與標準(zhun)制定70余(yu)項(xiang)(xiang),累計(ji)承擔國(guo)家和(he)地方科(ke)技(ji)(ji)計(ji)劃項(xiang)(xiang)目(mu)100余(yu)項(xiang)(xiang)。
強化多污染物協同管控
針對(dui)大(da)氣(qi)復(fu)合污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)日(ri)益突出的(de)問題,聚光(guang)科技(ji)(ji)(ji)準確分(fen)析(xi)大(da)氣(qi)復(fu)合污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)成(cheng)(cheng)(cheng)因,強化(hua)(hua)多(duo)(duo)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)物(wu)(wu)(wu)(wu)(wu)(wu)協同(tong)(tong)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong),落實污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)源(yuan)治理任務,加快實現(xian)環境空(kong)(kong)氣(qi)質(zhi)(zhi)量改善(shan)(shan),其《環境空(kong)(kong)氣(qi)質(zhi)(zhi)量達標(biao)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)服(fu)務方案(an)》通過(guo)當地(di)基礎數據(ju)(ju)分(fen)析(xi),建立污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)成(cheng)(cheng)(cheng)因案(an)例庫,掌握(wo)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)物(wu)(wu)(wu)(wu)(wu)(wu)歷(li)史變化(hua)(hua)規律,指導多(duo)(duo)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)物(wu)(wu)(wu)(wu)(wu)(wu)的(de)日(ri)常協同(tong)(tong)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)與(yu)重(zhong)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)應急(ji)。采(cai)用(yong)細顆(ke)粒(li)物(wu)(wu)(wu)(wu)(wu)(wu)(PM2.5)、可吸入顆(ke)粒(li)物(wu)(wu)(wu)(wu)(wu)(wu)(PM10)、臭氧(O3)、二(er)氧化(hua)(hua)硫(SO2)、二(er)氧化(hua)(hua)氮(NO2)、一(yi)(yi)氧化(hua)(hua)碳(CO)、揮發性(xing)有機物(wu)(wu)(wu)(wu)(wu)(wu)(VOCs)、甲醛(quan)(HCOH)、過(guo)氧乙(yi)酰硝(xiao)酸酯(PANs)、光(guang)解速(su)率(lv)等多(duo)(duo)因子、全流程協同(tong)(tong)走(zou)航監(jian)測技(ji)(ji)(ji)術與(yu)激光(guang)雷達掃描技(ji)(ji)(ji)術,開展重(zhong)點地(di)區走(zou)航摸排(pai),快速(su)掌握(wo)區域(yu)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)物(wu)(wu)(wu)(wu)(wu)(wu)濃度與(yu)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)源(yuan)時(shi)空(kong)(kong)分(fen)布狀況,識別熱點管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)區域(yu)與(yu)時(shi)段;進(jin)一(yi)(yi)步結合車載顆(ke)粒(li)物(wu)(wu)(wu)(wu)(wu)(wu)來源(yuan)解析(xi)、臭氧光(guang)化(hua)(hua)學污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)綜合監(jian)測系(xi)統,源(yuan)排(pai)放清單及空(kong)(kong)氣(qi)質(zhi)(zhi)量模(mo)擬技(ji)(ji)(ji)術,分(fen)析(xi)各(ge)項污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)成(cheng)(cheng)(cheng)因與(yu)生成(cheng)(cheng)(cheng)機制,識別主(zhu)要(yao)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)源(yuan)類,定量評估一(yi)(yi)次、二(er)次污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)貢(gong)獻,識別重(zhong)點管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)行(xing)業(ye),為(wei)從(cong)時(shi)、空(kong)(kong)、物(wu)(wu)(wu)(wu)(wu)(wu)各(ge)角度制定差異化(hua)(hua)協同(tong)(tong)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)策略,提供決策支撐。依托多(duo)(duo)元(yuan)數據(ju)(ju)分(fen)析(xi)成(cheng)(cheng)(cheng)果及相關工(gong)作流程與(yu)機制構建測管(guan)(guan)(guan)(guan)(guan)(guan)(guan)治一(yi)(yi)體化(hua)(hua)達標(biao)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)服(fu)務體系(xi),可根據(ju)(ju)區域(yu)、點位差異性(xing),形成(cheng)(cheng)(cheng)日(ri)常與(yu)重(zhong)污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)分(fen)級(ji)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)策略,保障重(zhong)點區域(yu)空(kong)(kong)氣(qi)質(zhi)(zhi)量;針對(dui)各(ge)類污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)源(yuan)形成(cheng)(cheng)(cheng)行(xing)業(ye)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)理、治理體系(xi),落實污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)源(yuan)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)治任務,協同(tong)(tong)減少污(wu)(wu)(wu)(wu)染(ran)(ran)(ran)(ran)物(wu)(wu)(wu)(wu)(wu)(wu)排(pai)放;并(bing)多(duo)(duo)維(wei)度量化(hua)(hua)評估管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong)效(xiao)果,確保及時(shi)發現(xian)問題,精準定位問題,有效(xiao)解決問題,實現(xian)環境空(kong)(kong)氣(qi)質(zhi)(zhi)量協同(tong)(tong)管(guan)(guan)(guan)(guan)(guan)(guan)(guan)控(kong)(kong)(kong),助(zhu)力環境空(kong)(kong)氣(qi)質(zhi)(zhi)量持續改善(shan)(shan)。
《環境空氣質量達(da)標(biao)管控服務方案(an)》已在(zai)海南省、宿州(zhou)(zhou)市(shi)(shi)、武威(wei)市(shi)(shi)、徐州(zhou)(zhou)市(shi)(shi)、聊(liao)城市(shi)(shi)、宜(yi)昌市(shi)(shi)等多個省市(shi)(shi)區進行了應(ying)用,并取得顯著效果。方案(an)配(pei)置的核心在(zai)線監測設備均(jun)為(wei)公司(si)自(zi)產設備,各(ge)項技術(shu)指標(biao)均(jun)達(da)到國內領(ling)先水平,可為(wei)大(da)氣污染防治提供精(jing)準數據支撐。
管控提升空氣質量排名
2017年,聚光(guang)科技(ji)在歷(li)史(shi)數據研(yan)判分(fen)析(xi)基礎上,采(cai)用空(kong)氣質(zhi)量走航監(jian)測車、激光(guang)雷達監(jian)測車等(deng)技(ji)術對宿州(zhou)市(shi)顆粒物的整體污染特(te)征進行了摸排分(fen)析(xi),并(bing)(bing)制(zhi)定了管控策略。2018年-2019年,通過(guo)在當地組(zu)建技(ji)術組(zu)、走航巡(xun)查組(zu)等(deng)專業(ye)團隊,建立(li)網格分(fen)級、部門聯動(dong)、污染巡(xun)查等(deng)機制(zhi),并(bing)(bing)提供動(dong)態研(yan)判分(fen)析(xi)、污染巡(xun)查處置、敏感點(dian)防控策略以及工地揚塵、散煤、餐(can)飲油煙等(deng)污染源專項管控服務,逐步降(jiang)低PM2.5濃(nong)度,提升空(kong)氣質(zhi)量排名。
2018年宿州市PM2.5濃度(du)明顯下降,擺脫倒一,下降率全省(sheng)第3(-17.71%)。
2019年(nian)宿州市PM2.5濃度明(ming)顯下降(jiang),下降(jiang)率省內(nei)排(pai)名第1(-9.09%)。
2019年(nian)1-12月宿州市空氣質量(liang)改善(shan)幅度(du)居(ju)168重點城市第一。
精準臭氧管控技術服務
2020年(nian)4月,聚光科技(ji)進(jin)駐湖(hu)北(bei)宜昌,利用當地基礎空氣質量監測(ce)數(shu)(shu)據(ju)、光化(hua)學全流程監測(ce)數(shu)(shu)據(ju)以及走(zou)航技(ji)術(shu)開(kai)展臭氧(yang)(yang)污(wu)(wu)染特(te)征分析(xi)、VOCs區域整體特(te)征摸排(pai)、臭氧(yang)(yang)成因診斷及來源解析(xi)工作,并(bing)組(zu)建數(shu)(shu)據(ju)分析(xi)組(zu)、走(zou)航巡(xun)(xun)查組(zu),確定指導專家,建立了宜昌市本地化(hua)臭氧(yang)(yang)研判分析(xi)機制(zhi)(zhi)、日(ri)會商機制(zhi)(zhi)、預報預警機制(zhi)(zhi)。針(zhen)對宜昌市工業企(qi)業、加(jia)油(you)站等行業開(kai)展了拉(la)網式(shi)巡(xun)(xun)查和突擊巡(xun)(xun)查,形成巡(xun)(xun)查問題(ti)臺賬,整理(li)特(te)征因子庫,保(bao)障(zhang)臭氧(yang)(yang)污(wu)(wu)染防治工作有序推進(jin)。
2019年(nian)(nian)5-8月均為不(bu)降(jiang)反升,2020年(nian)(nian)均改善為同比顯著下降(jiang)。變化率湖北省內排名(ming)各月均有提升,2020年(nian)(nian)8月下降(jiang)率居全省第一。
優(you)(you)良天同(tong)比(bi)(bi)增(zeng)(zeng)加(jia)21天。5月(yue)(yue)同(tong)比(bi)(bi)增(zeng)(zeng)加(jia)3天;6月(yue)(yue)全(quan)月(yue)(yue)優(you)(you)良,同(tong)比(bi)(bi)增(zeng)(zeng)加(jia)7天;7月(yue)(yue)全(quan)月(yue)(yue)優(you)(you)良,同(tong)比(bi)(bi)增(zeng)(zeng)加(jia)4天;8月(yue)(yue)同(tong)比(bi)(bi)增(zeng)(zeng)加(jia)7天。
臭氧濃度顯著下(xia)降,6月同比下(xia)降29μg/m3;7月同比下(xia)降38μg/m3,8月同比下(xia)降30μg/m3。
2020年1-6月,宜昌市空氣質(zhi)量(liang)改善幅(fu)度居全國168城(cheng)市第一。
多項技術應用于重點項目中
聚光(guang)科(ke)技涉(she)及顆粒物(wu)來源(yuan)解析(xi)、光(guang)化(hua)學(xue)(xue)(xue)反(fan)應(ying)全過程(cheng)因子監(jian)(jian)測(ce)(ce)系列(lie)設備技術成熟,已應(ying)用于眾多國(guo)家(jia)級(ji)/省(sheng)級(ji)重點(dian)項(xiang)目(mu)(mu)建(jian)設,可提供準確可靠(kao)的(de)大(da)氣污(wu)(wu)染(ran)(ran)監(jian)(jian)測(ce)(ce)數據(ju),開展(zhan)精(jing)細(xi)化(hua)污(wu)(wu)染(ran)(ran)成因分(fen)析(xi)及精(jing)細(xi)化(hua)管控指導,協助客戶實(shi)現大(da)氣污(wu)(wu)染(ran)(ran)管控“產品-技術-服務應(ying)用”的(de)一(yi)(yi)站(zhan)式購買。目(mu)(mu)前公司已建(jian)設中國(guo)環境監(jian)(jian)測(ce)(ce)總(zong)站(zhan)國(guo)家(jia)大(da)氣顆粒物(wu)組(zu)分(fen)-光(guang)化(hua)學(xue)(xue)(xue)監(jian)(jian)測(ce)(ce)網(wang)建(jian)設項(xiang)目(mu)(mu),海南(nan)省(sheng)大(da)氣復合污(wu)(wu)染(ran)(ran)綜合來源(yuan)解析(xi)項(xiang)目(mu)(mu)、廣東顆粒物(wu)組(zu)分(fen)監(jian)(jian)測(ce)(ce)網(wang)(二期)建(jian)設項(xiang)目(mu)(mu)、浙江(jiang)省(sheng)環境監(jian)(jian)測(ce)(ce)中心-杭州光(guang)化(hua)學(xue)(xue)(xue)監(jian)(jian)測(ce)(ce)網(wang)-金(jin)華(hua)光(guang)化(hua)學(xue)(xue)(xue)監(jian)(jian)測(ce)(ce)網(wang)、石(shi)家(jia)莊大(da)氣復合超級(ji)站(zhan)及應(ying)用項(xiang)目(mu)(mu)。此外(wai),公司擁有專業化(hua)數據(ju)分(fen)析(xi)服務團隊(dui),均由國(guo)內雙一(yi)(yi)流高校(北(bei)京大(da)學(xue)(xue)(xue)、浙江(jiang)大(da)學(xue)(xue)(xue)、復旦大(da)學(xue)(xue)(xue)、南(nan)開大(da)學(xue)(xue)(xue)等)碩(shuo)博學(xue)(xue)(xue)歷(li)的(de)高素質人才組(zu)建(jian),并(bing)與國(guo)內知名高校、科(ke)研院所(suo)有深(shen)入(ru)合作。